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Abstract. Understanding the sources and sinks of methane
(CH4) is critical to both predicting and mitigating future
climate change. There are large uncertainties in the global
budget of atmospheric CH4, but natural emissions are esti-
mated to be of a similar magnitude to anthropogenic emis-
sions. To understand CH4 flux from biogenic sources in the
United States (US) of America, a multi-scale CH4 obser-
vation network focused on CH4 flux rates, processes, and
scaling methods is required. This can be achieved with a
network of ground-based observations that are distributed
based on climatic regions and land cover. To determine the
gaps in physical infrastructure for developing this network,
we need to understand the landscape representativeness of
the current infrastructure. We focus here on eddy covariance
(EC) flux towers because they are essential for a bottom-up
framework that bridges the gap between point-based cham-
ber measurements and airborne or satellite platforms that in-
form policy decisions and global climate agreements. Using

dissimilarity, multidimensional scaling, and cluster analysis,
the US was divided into 10 clusters distributed across tem-
perature and precipitation gradients. We evaluated dissimi-
larity within each cluster for research sites with active CH4
EC towers to identify gaps in existing infrastructure that limit
our ability to constrain the contribution of US biogenic CH4
emissions to the global budget. Through our analysis using
climate, land cover, and location variables, we identified pri-
ority areas for research infrastructure to provide a more com-
plete understanding of the CH4 flux potential of ecosystem
types across the US. Clusters corresponding to Alaska and
the Rocky Mountains, which are inherently difficult to cap-
ture, are the most poorly represented, and all clusters require
a greater representation of vegetation types.
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1 Introduction

The 21st century is characterized by ongoing changes in
Earth’s climate system that result from increasing concentra-
tions of radiatively important trace gases in the atmosphere.
Unlike the relatively steady increases of atmospheric car-
bon dioxide (CO2) and nitrous oxide (N2O), atmospheric
methane (CH4) concentrations show dynamic trends with a
rapid increase of ∼ 10 ppb yr−1 since 2014 (Nisbet et al.,
2019). The annual increase of atmospheric CH4 in 2020 was
the largest on record at ∼ 15 ppb yr−1 (Dlugokencky, 2021),
despite the global pandemic reducing energy demand (Le
Quéré et al., 2021). Increasing atmospheric CH4 concentra-
tions (Nisbet et al., 2019) is of concern because CH4 is 34
times more effective at trapping heat in the atmosphere com-
pared to an equivalent mass of CO2 over a 100-year time-
frame and accounts for ∼ 42 % of warming since the pre-
industrial period (IPCC, 2021). These rapid increases in at-
mospheric CH4 challenge us to reach the goals of the Paris
Agreement (Nisbet et al., 2019) but also provide an oppor-
tunity given the relatively short atmospheric residence time
(∼ 9 years) of CH4. Understanding the sources and sinks of
CH4 is therefore critical in predicting and mitigating future
climate change.

Quantifying the national CH4 budget is important for as-
sessing realistic pathways to mitigate climate change, yet un-
certainties in the magnitude, size, and location of sources and
sinks limit budget development (Saunois et al., 2020; Bruh-
wiler et al., 2021). Methane is emitted from a variety of of-
ten co-located biogenic, thermogenic, and pyrogenic sources
(IPCC, 2013; Nisbet et al., 2019). Biogenic emissions are
thought to be of a similar magnitude to total anthropogenic
emissions, yet biogenic CH4 emissions remain the most un-
certain source of the global CH4 budget (Saunois et al.,
2020). Surface–atmosphere exchange from biogenic sources
and sinks, the biological and environmental processes driving
these fluxes (e.g., ebullition, aerenchyma pumping), and how
CH4 sources and sinks change over space and time, including
interannual variability (Michalak et al., 2009; Kirschke et al.,
2013; Knox et al., 2019; Nisbet et al., 2019), are not well con-
strained. Finally, both the vast areas with relatively small up-
take and emission rates (e.g., deserts, grasslands, forests) and
the lake–ocean water continuum that transports CH4 (e.g.,
fens, streams, and rivers) have been largely understudied but
could contribute significantly to regional and global budgets
(Hutchins et al., 2019; Rosentreter et al., 2021; Zhou et al.,
2021). These unknowns hinder our ability to predict future
climate change due to the complex feedbacks between bio-
logical processes (e.g., microbial production and consump-
tion) (Sherwood et al., 2017; Zhang et al., 2017; Oh et al.,
2020), climate change (Zhang et al., 2017), and land cover
change (Kirschke et al., 2013; Knox et al., 2019; Saunois et
al., 2020).

To understand the biogenic CH4 flux potential of the
United States of America (US), a multi-scale CH4 observa-

tion network focused on CH4 flux rates, processes, and scal-
ing methods is required. When scaling bottom-up measure-
ments to the landscape and regional scale, measurements of
CH4 from existing infrastructure tend not to be sufficiently
geographically distributed to capture the true spatial variation
that is innate to the production and consumption of CH4, and
is compounded by large source/sink strengths in small areas
(e.g., periodic wetting/drying of seasonal wetlands, saturated
soils) (IPCC, 2013; Knox et al., 2019; Thornton et al., 2016)
and by very small source/sink strengths in very large areas.
In addition, bottom-up biogenic CH4 process-level estimates
have historically been limited to short periods (< 1–2 years),
are discontinuous (grab sampling), and/or occur only during
the growing season at middle and high latitudes (though see
Groffman et al., 2006, and Arndt et al., 2019, for notable ex-
ceptions).

There is a pressing need to assess the capacity of existing
infrastructure for current and future applications (Lovett et
al., 2007; Kumar et al., 2016; Jongman et al., 2017; Novick
et al., 2018; Villarreal et al., 2018; Chu et al., 2021). The rep-
resentativeness of research infrastructure is often described
in terms of the extent to which the measurements collected
at any given location and time represent the conditions at
any other location and time, and this is often driven by eco-
logical and climatic conditions (Sulkava et al., 2011; Chu et
al., 2021). Representativeness is also measured across land-
scapes, and studies have evaluated how well tower infrastruc-
ture captures the variability observed at specific sites (Chu et
al., 2021). These approaches seek to understand the repre-
sentativeness of the measurements for a broader landscape,
which is critical for upscaling point measurements to re-
gional and global scales. These types of assessments inform
the scientific community on how to increase their utility and
are often designed to support network design, upscaling, and
bias estimation (Chen et al., 2011; Ciais et al., 2014; Jong-
man et al., 2017; Schimel and Keller, 2015; Villarreal et al.,
2018; Kumar et al., 2016). There have been many attempts
to assess the representativeness of existing eddy covariance
(EC) tower networks for various purposes. To date, no study
has focused on CH4 infrastructure across the US, though
many studies have used clustering and ecoregions (Sulkava et
al., 2011; Hargrove and Hoffman, 2003), dissimilarity (Yang
et al., 2008), and distance measures (Hargrove and Hoffman,
2003; Yang et al., 2008; He et al., 2015; Hoffman et al., 2013)
on climatic (Novick et al., 2018) and vegetation type struc-
ture and function (Chu et al., 2021) to measure the repre-
sentativeness of existing research infrastructure. The primary
goal of this work is to fill this key knowledge gap by de-
termining the regions where biogenic CH4 infrastructure is
needed within the US in order to constrain both the national
and global CH4 budget.

To determine key regions where biogenic CH4 infrastruc-
ture is needed within the US, we statistically identify gaps
in active research infrastructure and evaluate areas where in-
frastructure can be augmented to include new CH4 measure-
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ments. We use a combination of climate data and dominant
land cover to guide the scientific community on how we can
develop a distributed observational network for the US by
leveraging existing infrastructure. While this analysis does
not capture the heterogeneity of the conditions that drive
CH4 fluxes at the ecosystem scale, it is designed to evalu-
ate the sampling intensity of research sites at the landscape
scale. This coarse resolution influences the capacity to scale
ecosystem-level results to the landscape, regional, and na-
tional level, which is required for the development of CH4
budgets and emission reduction strategies.

2 Methods

2.1 Overview

To determine the gaps in physical research infrastructure for
ecosystem-scale CH4 fluxes, we need to understand how the
current infrastructure is distributed across the US. We focus
here on EC flux towers given their capabilities for continu-
ous measurements and use in upscaling flux estimates and
are therefore a useful basis for identifying gaps in the current
network of CH4 observations. The AmeriFlux network of EC
towers was launched in 1996 and grew from about 15 sites
in 1997 to more than 110 active sites registered today. It was
originally a network of PI-managed sites measuring ecosys-
tem CO2, H2O, and energy fluxes. The network was estab-
lished to connect research on field sites representing ma-
jor climatic and ecological biomes, including tundra, grass-
lands, savanna, crops, and coniferous, deciduous, and tropi-
cal forests. The AmeriFlux community tailored instrumenta-
tion to suit each unique ecosystem but now also includes tow-
ers that are a part of the standardized network, the National
Ecological Observatory Network (NEON). In 2012, the US
Department of Energy established the AmeriFlux Manage-
ment Project (AMP) at Lawrence Berkeley National Labora-
tory (LBNL) to support the broad AmeriFlux community and
the AmeriFlux sites. The AMP standardizes, post-processes,
and makes flux data available to the research community.
More recently, flux towers began measuring CH4 in fresh-
water, coastal, upland, natural, and managed ecosystems. Al-
though we have information on the location of existing EC
tower infrastructure that is a part of AmeriFlux (n= 223),
NEON (n= 47), and known, independent PI-managed sites
(n= 141), we focus this analysis on the towers measuring
CH4 (n= 100) and we distinguish between towers providing
data to AmeriFlux (yes= 49, no= 51) and tower activity (ac-
tive= 70; inactive= 30). We understand that additional tow-
ers exist within the US, but because these towers are not re-
porting or providing data to the flux community, we cannot
include them in this analysis.

To understand the landscape representativeness across ge-
ographic clusters, we measured dissimilarity based on cli-
mate and land cover type, as these two factors together are

characteristic of regional resource availability and distur-
bance regimes. First, we developed a dissimilarity matrix
that was condensed down to a two-dimensional ordination
to determine regional clusters and calculate cluster dissim-
ilarity for each location within a cluster (Fig. 1). It is im-
portant to note that a tower should be representative of the
ecosystem type and the region where it is stationed (Desai,
2010; Jung et al., 2011; Xiao et al., 2012; Chu et al., 2021);
however, the landscape representativeness analysis done here
uses a coarser classification of land cover types that are more
emblematic of resource availability and factors that influ-
ence how ecosystems function, not the specific ecosystem
type where the tower is situated. Chu et al. (2021) examined
the land-cover composition and vegetation characteristics of
214 AmeriFlux tower site footprints. They found that most
sites do not represent the dominant land-cover type of the
ecosystems they exist within, and when paired with common
model–data integration approaches this mismatch introduces
biases on the order of 4 %–20 % for the enhanced vegetation
index (EVI) and 6 %–20 % for the dominant land cover per-
centage (Chu et al., 2021), making it essential to consider
landscape characteristics in the design and evaluation of net-
work infrastructure. Infrastructure representativeness at the
landscape scale is indicative of the capacity to upscale infor-
mation by climate and the dominant ecosystems of locations
within a landscape.

2.2 Climate and dominant land cover types

We used the National Land Cover Database (NLCD; https:
//www.mrlc.gov, last access: 1 October 2021) to create a
land cover layer for the contiguous US (Jin et al., 2019).
The NLCD has a 30 m resolution with a 16-class legend
based on a modified Anderson Level II classification sys-
tem. We reclassified the NLCD into eight major land cover
types (water, developed, barren, forest, scrub, herbaceous,
crop, and wetland). Where the NLCD was not available
(Alaska, Hawaii, and Puerto Rico), we used the Moderate
Resolution Imaging Spectroradiometer (MODIS; 1 km) land
cover (type 5 – vegetation functional types) for vegetation
functional type (MCD12Q1.006) (Sulla-Menashe and Friedl,
2018), which was also reclassified to the eight major land
cover types (Table 1). The crop land cover type was expanded
to non-irrigated and irrigated classes using agricultural in-
formation from the US Department of Agriculture’s Crop-
Scape and Cropland Data layer (Boryan et al., 2011), and
the wetland class was expanded using information from the
US Fish and Wildlife Service’s National Wetland Inventory.
Expanded wetland classes were emergent coastal, emergent
freshwater, and forest freshwater (Wilen and Bates, 1995).
Climate data were obtained from DAYMET (Thornton et
al., 2017). We used five climate variables to characterize the
climatic conditions across the US: annual mean daily mini-
mum, daily average, and daily maximum temperatures, an-
nual total precipitation, and mean annual daily vapor pres-
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Figure 1. To determine the gaps in physical research infrastructure
for CH4 fluxes we measured landscape cover and climate dissimi-
larity across the US and evaluated the current distribution of CH4
tower infrastructure.

sure deficit from 2010–2020. Understanding that these pat-
terns are changing with climate change, we chose a shorter
time period than the commonly used 30-year climate normal
to better represent current conditions (Bessembinder et al.,
2021). Land cover was resampled to match the DAYMET
climate data (1 km), and all pre-processing was done in R
version 4.0.4 (R Core Team, 2021) with the raster package
(Hijmans, 2021). This approach allowed us to create a land
cover layer of the dominant land cover types at 1 km reso-
lution that was expanded in categories of interest for CH4.
The land cover and climate layers were chosen to repre-
sent the primary environmental conditions that are often in-
dicative of a combination of resource availability and distur-
bance regimes. These coarse layers are essential for consid-
ering the landscape and large-scale climate effects that can
influence how ecosystems within landscapes function. While
the available land cover information is appropriate for the
coarse, landscape-scale analysis done here, it is important to
note that the products used here are not designed to estimate
the potential CH4 source/sink status, particularly from the
aquatic, wetland, and agricultural land cover types.

Table 1. Land cover and data sources. The blended land cover prod-
uct comprises the National Land Cover Database (NLCD) and Mod-
erate Resolution Imaging Spectroradiometer (MODIS). The crop
category is enhanced with CropScape and the wetland category with
the National Wetland Inventory (NWI) to identify areas dominated
by land cover types with additional classes added for types with
expected CH4 source potential.

Land cover Expanded land cover Data source

Water n/a NLCD, MODIS
Developed
Barren
Forest
Scrub
Herbaceous

Crop Crops – non-irrigated NLCD, CropScape
Crops – irrigated NLCD, CropScape

Wetlands Emergent coastal NLCD, MODIS, NWI
Emergent freshwater
Forested freshwater

n/a: not applicable.

2.3 Measuring landscape dissimilarity across clusters
within the US

Climate, land cover, and location (latitude/longitude) were
used in a multivariate distance analysis (Venables and Rip-
ley, 2002; Ripley, 2007; Cox and Cox, 2008) to measure the
dissimilarity across the US (all 50 states and Puerto Rico) at
the landscape scale and divide it into ecological clusters. The
purpose of this is to identify the interrelatedness of ecologi-
cal components within a landscape (Ippoliti et al., 2019). We
included location (latitude/longitude) to incorporate the in-
teraction between climate, land cover, and most importantly,
seasonality. The US was subsampled because of limitations
in the maximum number of points that can be evaluated in the
cluster analysis. To measure dissimilarity, we first randomly
sampled (n= 20 000 1 km pixels) the US, maintaining the
distribution of land cover and climate to define dissimilarity
between observations. Although there were more than 8 mil-
lion 1 km pixels available for the US, there are limits to the
number of samples that can be analyzed by the functions used
for the multidimensional scaling (MDS) analysis. We first
developed a dissimilarity matrix by calculating Gower dis-
similarity (Gower, 1971; Huang, 1997; Podani, 1999; Ahmad
and Dey, 2007; Harikumar and Pv, 2015) using the function
distmix from the package kmed in R. We used Gower dissim-
ilarity because it can handle mixed data types. For each vari-
able type in the data set, the dissimilarity metric that works
well for that type is used and scaled to fall between 0 and 1.
Then, a linear combination featuring user-specified weights
(most simply an average) is calculated to create the final dis-
similarity matrix. This approach measures the dissimilarity
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for each location within the US using land cover, climate, and
location information (land cover, five climate variables, and
location) and creates a dissimilarity matrix (20 000× 20 000)
that indicates dissimilarity for a location to every other loca-
tion in the US.

Once we created the dissimilarity matrix, we used MDS
to generate a two-dimensional ordination showing landscape
dissimilarity with the MASS package in R (Venables and Rip-
ley, 2002). The MDS makes it possible to evaluate dissimi-
larity in two dimensions, which is essential to our goal to
evaluate representativeness. We used the Kruskal method of
non-metric scaling with the IsoMDS function in the MASS
package (Venables and Ripley, 2002). IsoMDS works best
when applied to metric variables (Torgerson, 1958). Torger-
son (1958) initially developed this method, which assumes
that the data obey distance axioms. It uses eigendecompo-
sition of the dissimilarity to identify major components and
axes and represents any point as a linear combination of di-
mensions. This is very similar to principal component analy-
sis (PCA) or factor analysis, but it uses the dissimilarity ma-
trix rather than a correlation matrix as input. Furthermore,
the included dimensions are the most important dimensions
produced, like PCA which is able to identify all of the di-
mensions that exist in the original data up to N − 1, but will
retain only the most important ones.

Knowing that regional patterns in climate and land cover
will be important for scaling CH4 to the regional and na-
tional scale, we divided the US into clusters to evaluate rep-
resentativeness using the first and second dimension from the
MDS. Cluster analysis has been used to assess the spatial
representativeness of network infrastructure and to suggest
arrangements of study sites (Sulkava et al., 2011; Kumar et
al., 2016). It is an objective method of producing meaning-
ful, mutually exclusive groups based on similarities among
entities (Balijepally et al., 2011). This approach is descrip-
tive, a-theoretical, and non-inferential with sound mathemat-
ical support (Balijepally et al., 2011). Clustering outcomes
are driven by large effect sizes or the accumulation of many
smaller effects across features, and they are mostly unaf-
fected by differences in covariance structure (Dalmaijer et
al., 2020). Sufficient statistical power is achieved with rela-
tively small samples (Dalmaijer et al., 2020), provided clus-
ter separation is sufficient. Traditional notions about statisti-
cal power only partially apply to cluster analysis (Dalmaijer
et al., 2020). Increasing the number of sample points above
a sufficient sample size does not improve power, but effect
size is important (Dalmaijer et al., 2020). Clustering is useful
when large subgroup separation is expected and when MDS
improves cluster separation (Dalmaijer et al., 2020).

We determined the optimal number of clusters using the
library cluster and the function pam in R (Reynolds et al.,
2006; Schubert and Rousseeuw, 2019, 2021). This approach
uses the k-medoids algorithm, which partitions a data set into
k groups or clusters and is a robust alternative to k-means
clustering (Kaufman and Rousseeuw, 2009). The k-medoid

algorithm is less sensitive to noise and outliers, compared to
k-means, because it uses medoids as cluster centers. The k-
medoids algorithm requires the user to specify k, the number
of clusters to be generated. A useful approach to determine
the optimal number of clusters is the silhouette method. We
fit an increasing number of clusters from 2 to 50 to construct
a silhouette plot and choose the number of clusters that max-
imized the average silhouette width (Fig. S2).

While useful, there are limitations to cluster analysis that
can affect cluster patterns and the stability of clusters. The
final cluster solution is dependent upon the clustering vari-
ables, the similarity/dissimilarity measure used, the cluster-
ing algorithm, and the data used to estimate clusters. There-
fore, varying elements of clustering methods can lead to
many alternative cluster solutions (Balijepally et al., 2011).
Cluster solutions can also be produced in the absence of nat-
ural structure in the data, and there is no statistical basis to
reject the null hypothesis that there are no natural groupings
in the data (Balijepally et al., 2011). Cluster algorithms also
cannot differentiate between relevant versus irrelevant vari-
ables. Therefore, only the variables expected to be influential
should be used (Balijepally et al., 2011) and should emanate
from past research or explicit theory and be consistent with
the objectives of the study.

Due to the limitations of this approach, it is important to
validate the cluster solution to ensure its meaningfulness and
utility (Punj and Stewart, 1983; Balijepally et al., 2011). Con-
sistency is established by checking the stability of cluster
solutions obtained by using multiple algorithms (Punj and
Stewart, 1983) or through splitting a sample, analyzing the
cluster solutions for the two halves separately, and check-
ing their consistency. After checking for reliability, the va-
lidity of a cluster solution is established through external va-
lidity and criterion-related validity. External validity ensures
that clusters are representative of the actual population (Cook
and Campbell, 1979) and can be verified by clustering on a
hold-out sample using the same variables and assessing the
similarity of the two solutions. This analysis was repeated
five times to ensure that the 20 000 pixel subsample would
produce similar results in the dimensions and clustering. For
simplicity, we show the results of the first analysis, and a
comparison of clustering methods and measures of stability
are available in the Supplement.

To measure dissimilarity across the cluster once defined,
each cluster was represented by one of the data points in the
cluster named the cluster medoid. The medoid had the low-
est average dissimilarity between it and all other objects in
the cluster. The medoid can be considered a representative
example of the members of that cluster. We calculated the
dissimilarity between every location within the cluster to the
medoid to create a measure of how different each location
was from the medoid condition of each cluster. We utilized
the pointDistance function in the raster package, which pro-
vided a unit-less relative measure of dissimilarity that was
determined by measuring the difference between the first and
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second dimensions produced by the isoMDS of each point in
a cluster to the dimensions of the medoid.

To extrapolate the cluster and dissimilarity layers across
the entire US beyond the 20 000-pixel subsample and to
show the predictive validity (Kerlinger, 1986), we employed
the machine learning algorithm random forest (RF) with the
package randomForest (Liaw and Wiener, 2002) to model the
first and second dimensions using the land cover and climate
layers as predictors. We then created a random forest model
of the cluster layer using the first and second dimension as
the explanatory variables. All models were then projected
spatially to produce a spatially explicit cluster layer and a
dissimilarity layer beyond the 20 000 sample points that were
used in the MDS analysis. The RF algorithm was first intro-
duced by Breiman (2001) and uses an ensemble of regression
trees to predict target values. In RF, a series of bootstrapped
data sets are used to generate independent regression trees;
at each node, a random sample of predictor variables is se-
lected for use. The RF prediction is the ensemble of multiple
individual trees. We created 500 trees for each year and site,
using 80 % of the data for model fitting and 20 % for model
validation. The fit of each RF was evaluated with the out-of-
bag mean square error (OOB MSE), and variable importance
was computed as the amount of the prediction error increased
when a particular predictor was permuted. Initially, 500 RF
trees were generated. Overall model fit was evaluated with
the average of the 500 OOB MSEs from the final model for
each year and site, and variable importance was calculated as
the average rank of each predictor variable for the 500 mod-
els. This approach allowed us to measure the importance of
the original data on the first and second dimensions defined
by the MDS and how the MDS leads to cluster and dissim-
ilarity patterns. This step was essential to producing a spa-
tially explicit cluster and dissimilarity layers for the entire
US, since the MDS analysis limits the number of observa-
tions that can be analyzed. This is also important for evalu-
ating the meaningfulness of the cluster by using the original
variables used in the development of the distance matrix to
predict clusters.

2.4 Measuring the landscape representativeness of
research infrastructure

Representativeness studies discern when, where, and at what
frequency networks are measuring ecological processes (Bal-
docchi et al., 2012; Jongman et al., 2017; Vaughan et al.,
2001; Villarreal et al., 2018). To understand the represen-
tativeness of current CH4 infrastructure, we defined clusters
(Sulkava et al., 2011) and measured the dissimilarity between
each location in a cluster to the medoid. We extracted the
cluster and dissimilarity for all active tower sites measur-
ing CH4 that were distributed across the US and measured
the tower cluster representativeness (TRcluster) as the percent
overlap between the range of dissimilarity sampled by the
infrastructure (rcluster) divided by the range of dissimilarity

observed in the entire cluster (r; Eq. 1).

TRcluster =
rcluster

r
× 100 (1)

We recognize that it is essential to capture the distribution
of dissimilarity across an entire cluster to upscale ecosys-
tem measurements. We also report the sampling intensity of
the major ecosystem types within the cluster and report the
ecosystem representativeness (TRIGBP) by the International
Geosphere–Biosphere Programme (IGBP) vegetation types
of the towers (Eq. 2).

TRIGBP =
rIGBP

r
× 100 (2)

This approach allows the evaluation of representativeness
that is not based on a specific research site, but on the dissim-
ilarity of a location to other locations in the landscape, and
we use the range to indicate a capacity to scale within a clus-
ter which is based on both the effects of landscape dominant
land cover, climate, and the specific ecosystems measured
(IGBP).

3 Results

3.1 Measuring landscape dissimilarity across clusters
within the US

Land cover, climate, and location were condensed down to
two dissimilarity dimensions (Fig. 2a). Both climatic fac-
tors and location were the most important variables for de-
termining dimensions and explained 99 % of the variance in
dimensions (Fig. S1). Using the first and second dimensions,
the US was divided into 10 clusters (Fig. S2) that were dis-
tributed across temperature and wetness gradients (Fig. 2; Ta-
ble 2). The coldest zones were in Alaska and included clus-
ters Na and Nb. Cool to temperate clusters in the midwestern
and western US include NW, W, and NEa. Temperate clusters
extend from the midwestern to the eastern US and include
clusters NEb and Ea. Warm regions were distributed across
clusters Eb, SW, and SE. Dry clusters (Na, SW, W, and Nb)
were distributed across the western US and Alaska, and wet
clusters (Ea, Eb, and SE) were in the south-eastern US and
Hawaii. Individual clusters represented 7 %–16 % of the US
each by area (Table 2) with cluster NW as the largest clus-
ter in the Pacific Northwest, and the smallest cluster being
cluster Nb in the northern half of Alaska.

Across all clusters, dissimilarity ranged from 0.01 to 0.33
(Fig. 3). The mean dissimilarity was 0.04, and most areas
within a cluster were less than or equal to the mean. South-
ern Alaska (cluster Na), Hawaii (clusters SE and Eb), Florida
(cluster SE), Puerto Rico (cluster SE), and the northeast
(cluster NEa) had greater than average dissimilarity in their
respective clusters.

Dominant landscape land cover types also varied across
clusters, with forests, scrub, and herbaceous ecosystems
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Figure 2. (a) Multidimensional scaling across the United States (US) produced 10 clusters using ecotype (Table 1), climate, and location
(latitude/longitude). (b) Spatial distribution of the identified clusters.

Figure 3. Cluster dissimilarity for the US. Inset: the distributions of
dissimilarity across all clusters shown in a histogram, in which the
line denotes the mean dissimilarity across all clusters.

dominating clusters (> 20 % coverage; Table 2). Although
irrigated croplands did not have high coverage rates across
any cluster, non-irrigated croplands had high coverage rates
in NEb, Ea, and NEb. Wetlands did not have high coverage
rates in any cluster.

3.2 Landscape representativeness of existing CH4
tower infrastructure

There were 70 active EC towers measuring CH4 distributed
across forest (3 towers), grasslands (4 towers), shrublands (1
tower), agriculture (19 towers), wetlands (37 towers), barren

(2 towers), and aquatic (4 towers) IGBP vegetation classes.
Less than half of the active towers (43 %) were providing
data to the community through AmeriFlux, limiting the de-
velopment of CH4-derived products. For this reason, we will
first focus this analysis on the active towers providing data to
AmeriFlux. Although CH4 EC tower infrastructure was not a
part of a single organized network designed to be representa-
tive of the climate, landscape, and dominant IGBP vegetation
classes that exist within the US, EC tower infrastructure that
was providing data to AmeriFlux was distributed across 8 of
the 10 clusters (Table 3), with clusters NW and SE without
any active towers providing data to the community. Tower
representativeness (TRcluster) of clusters ranged from 0 %–
88 %. The greatest TRcluster was for Eb and NEa, and the
lowest TRcluster was for NW and SE, which had no towers.
TRcluster was low (< 50 %) for most clusters, and high cov-
erage was not associated with a higher frequency of towers.
A high TRcluster was found in clusters where towers were
dispersed across IGBP vegetation classes and where tow-
ers in wetlands, forests, or the arctic tundra (barren) were
distributed across the observed range in the dissimilarity of
clusters. Most clusters were substantially under-sampled (Ta-
ble 3, Fig. 4) due to an insufficient number of towers measur-
ing CH4 and poor distribution across the cluster.

The representativeness of IGBP vegetation types within
clusters was poor for all vegetation types, excluding forests
in the NEa. TRIGBP ranged from 0 %–79 %, and wetlands
were the only IGBP class to be sampled across eight clus-
ters. Ideally, IGBP classes should be distributed both within
and across clusters where the classes exist. There was not
a single cluster with towers in all of the IGBP classes (for-
est, scrub, aquatic ecosystems, crops, wetlands, barren tun-
dra, and grasslands) that are found within that cluster.

There were important gains in the TRcluster when consider-
ing all CH4 towers regardless of if they were providing data
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Table 2. The land cover and climate of the 10 clusters in the US. Crops were divided into irrigated (CropI) and non-irrigated (CropNI)
and wetlands into emergent coastal (WetEC), emergent freshwater (WetEF), and freshwater forest (WetFF). Percent coverage (% Cov) is the
percent area occupied by a cluster and R is the range in dissimilarity for each cluster.

Cluster Dominant Climate % Cov R

landscape land cover (% Cov)

Forest Scrub Herb CropI CropNI WetEC WeEF WetFF

Na 27.4 39.0 3.8 0 0 0.1 1.6 1.9 Cold–cool (dry) 11 0.13
NW 28.4 33.2 23.0 0 6.5 0.0 0.6 0.2 Cool–temperate (mild) 16 0.11
NEb 24.4 0.4 9.3 0 34.2 0.0 0.7 1.9 Temperate (mild–wet) 10 0.06
Ea 39.0 0.9 7.7 0.0 24.3 0.3 0.2 1.4 Temperate (wet) 9 0.04
Eb 37.8 3.8 9.9 0.9 14.0 0.2 0.3 6.7 Warm (wet) 8 0.04
SW 2.6 58.8 17.3 0.2 7.4 0.0 0.2 0.2 Warm (dry) 9 0.25
W 19.4 42.6 20.8 0 6.9 0.0 0.4 0.1 Cool–temperate (dry) 12 0.07
NEa 27.2 1.5 6.1 0 23.5 0.0 2.1 7.6 Cool–temperate (mild–wet) 9 0.08
Nb 9.0 51.7 16.0 0 0 0.1 2.0 0.3 Cold (dry) 7 0.11
SE 19.4 19.3 8.2 0.6 7.8 1.6 2.2 7.9 Hot (wet) 9 0.31

Table 3. The total number of eddy covariance (EC) towers measuring CH4 and providing data to AmeriFlux. The tower frequency by
dominant landscape type, the total cluster representativeness (TRcluster), and cluster representativeness by major ecosystem types are shown
(TRIGBP). For TRcluster and TRIGBP values of 0.01 were assigned where a single tower was present.

Cluster EC CH4 Tower frequency by dominant TRcluster TRIGBP (%)
landscape land cover (%)

Forest Scrub Herb Crop Wet Urban Barren Water Forest Scrub Aquatic Crop Wet Barren Grass

Na 4 2 1 – – 1 – – – 3.0 0.01 0.01 – – 0.02 – –
NW – – – – – – – – – – – – – – – – –
NEb 2 1 – – 1 – – – – 19.8 – – – 0.01 0.01 – –
Ea 1 – – – – 1 – – – 0.01 – – – – 0.01 – –
Eb 3 – – – 1 2 – – – 88 – – – 0.01 42.1 – –
SW 7 – – 1 3 2 – 1 – 2.0 – – – 0.14 2.0 – 0.01
W 1 – – – – – – – 1 0.01 – – – – 0.01 – –
NEa 7 4 – – – 3 – – – 79.3 79.3 – 0.02 – 13.4 – –
Nb 8 – 2 4 – 2 – – – 21.3 – – 0.01 – 21.3 6.3 0.01
SE – – – – – – – – – – – – – – – – –

Table 4. The TRcluster for CH4 towers that are active and providing
data to AmeriFlux, the TRcluster for all active CH4 towers, and the
TRcluster for all active towers in addition to NEON towers.

Cluster CH4 CH4 NEON
towers towers towers

(data (all)
providing)

Na 3.0 34.9 35.5
NW – 0.1 26.3
NEb 19.8 60.6 65.9
Ea 0.01 63.1 89.4
Eb 88.1 88.1 88.1
SW 2.0 3.3 17.3
W 0.01 0.01 38.8
NEa 79.3 79.3 79.3
Nb 21.3 21.3 21.3
SE – 23.6 50.8

to AmeriFlux (Table 4 and Fig. 4). The clusters with substan-
tial gains in representativeness (> 10 %) include Na, NEb,
Ea, and the SE. The TRcluster of the NW, Ea, SW, W, and the
SE would be further enhanced by more than 10 % with the
addition of CH4 instrumentation at NEON tower sites.

4 Discussion

To determine key regions where biogenic CH4 infrastructure
is needed within the US, we identified gaps in active research
infrastructure. We found that there is an insufficient num-
ber of towers measuring CH4, and the distribution of these
sites across the range in dissimilarity observed is poor for all
clusters. Current EC towers measuring CH4 are in ecosys-
tems known to be sources of CH4. This is extremely limit-
ing when trying to upscale CH4 fluxes because it leads to
a serious bias towards CH4 emissions in model results and
constrains our capacity to appropriately model ecosystems
that are CH4 sinks. In this analysis, we include NEON tow-
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Figure 4. The range in dissimilarity for clusters (black bar), active CH4 towers providing CH4 data to AmeriFlux (cyan), all active CH4
towers (magenta), and for NEON towers (blue). The black lines show the range in dissimilarity observed for a cluster and greater overlap
between the cluster range and the tower range is important for landscape representativeness.

ers because they are purposefully distributed across climate
zones and ecosystem types, they provide consistent and stan-
dardized measurements, existing infrastructure at these sites
could be quickly adapted to measure CH4, and all data are
publicly available. We understand that for PI-managed in-
frastructure the placement of towers is driven by the sci-
entific question being asked and research funding priorities
(Papale et al., 2015; Mahecha et al., 2017; Villarreal et al.,
2018; Knox et al., 2019), but as the number of towers mea-
suring CH4 fluxes continues to grow, consideration for key
underrepresented regions where towers are needed or where
more efforts are needed for existing but nonreporting towers
to contribute to AmeriFlux is of utmost importance. Mak-
ing all data available must become the standard of the trace
gas flux and biogeochemistry communities. Notable infras-
tructure gaps were in clusters Na, NW, SW, W, Nb, and the
SE, and all clusters require a greater representation of IGBP
vegetation types. Our analysis shows that the Na, W, and Nb
clusters are the most poorly represented regions, correspond-
ing to Alaska (Na and Nb) and the Rocky Mountains (W),
where large elevational changes in the landscape are inher-
ently difficult to capture.

One reason for gaps in CH4 flux tower infrastructure may
be the lag in technological capability behind that of CO2 flux
measurements. Methane gas analyzers with sufficient mea-
surement frequency for EC were not common before the late
1990s and early 2000s (Shurpali et al., 1993; Billesbach et
al., 1998; Rinne et al., 2007), and the number of commer-
cial options has expanded only more recently (Peltola et al.,
2013; Nemitz et al., 2018; Burba et al., 2019; Burba, 2021).
Therefore, as the flux tower infrastructure has expanded to
measure CH4, decisions on the locations of measurement
sites have largely been tied to CO2 and water vapor exchange
research (Baldocchi, 2014) and to the availability of suitable
infrastructure (McDermitt et al., 2011), and not necessarily

to address CH4 hypotheses. In addition to technological lim-
itations, the environments where we expect CH4 fluxes to
be highest complicate considerations for where best to place
instrumentation. Large sources of natural biogenic CH4 can
sometimes originate from small, heterogeneous components
within a landscape, such as patchy wetlands within an oth-
erwise upland forested region, causing the area to be a net
source of CH4 (Desai et al., 2015). In contrast, some sys-
tems covering large areas that are known to be important CH4
sources, such as arctic tundra ecosystems and shallow lakes
(Wik et al., 2016; Elder et al., 2020), are simply too remote
and difficult to instrument. When they are instrumented, tow-
ers are often clustered together regionally, resulting in in-
cremental changes in landscape representativeness. A non-
negligible portion of the existing CH4 measurements, includ-
ing both towers and chambers, are not placed where CH4
sources or sinks are but where the grid power is available to
run such measurements. The likely incomplete quantification
of CH4 fluxes within heterogeneous sites and the measure-
ment of CH4 fluxes at sites that were established to measure
CO2 and energy fluxes together introduce an inherent source
of site-level bias in existing data and our analyses. Hence, we
interpret our results as a best-case scenario, as this bias likely
would reduce even further our reported degree of representa-
tiveness.

Gaps in our US infrastructure and current capability to
measure CH4 were most noted when considering only the
AmeriFlux sites that provide CH4 data. When evaluating all
sites with CH4 infrastructure with the addition of the mea-
surement capability from NEON sites, there were great im-
provements in landscape representativeness. Still, the largest
gaps in infrastructure capability to measure expected CH4
sources were from aquatic sites. These gaps in representation
have been noted in other investigations of CH4 flux and bud-
get studies, as a part of larger global CH4 analyses (Saunois
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et al., 2020) and FLUXNET CH4 flux syntheses (Knox et al.,
2019; Delwiche et al., 2021). In fact, the call for more mea-
surements of CH4 from natural sites is not new (Matthews
and Fung, 1987; Bartlett and Harriss, 1993; Dlugokencky
et al., 2011; Nisbet et al., 2014) and has been advocated
as necessary to reduce the uncertainty in CH4 budget esti-
mates from natural ecosystems (Peltola et al., 2019), which
is among the largest uncertainty in the global CH4 budget
(Saunois et al., 2020). Even areas that have been tradition-
ally thought to have negligible CH4 emission or consump-
tion rates should be monitored because their contribution to
CH4 budgets may be significant when considering their large
spatial extent. There is also a strong need for a continental
CH4 observatory to aid in reducing these uncertainties in the
natural CH4 sources and sinks.

A large source of uncertainty in scaling bottom-up CH4 es-
timates are in the current land use classification (LUC) prod-
ucts (Kirschke et al., 2013; Knox et al., 2019; Saunois et al.,
2020), which are not designed to estimate the potential CH4
source/sink status, particularly from aquatic, wetland, and
agricultural land cover. Aquatic ecosystems contribute sig-
nificantly to global CH4 emissions, with emissions increas-
ing from natural to impacted aquatic ecosystems and from
coastal to freshwater ecosystems (Rosentreter et al., 2021).
Specific ecosystems within the landscape can contribute sig-
nificantly to landscape-level and regional CH4 source/sink
estimates. Aquatic emissions are likely to change in the fu-
ture due to an increase in urbanization, eutrophication, and
positive climate feedbacks (IPCC, 2021). Yet current wetland
classifications from land use data products are not suitable to
capture these potential changes, or the potential feedbacks
they may have on CH4 processes. Wetland classifications are
often generalized too broadly in current LUC schemas to
accurately scale and predict CH4 flux rates and processes.
Small changes in the delineation or characterization of LUC
can result in changing the source/sink status of whole re-
gions (Kirschke et al., 2013; Barkley et al., 2017; Knox et
al., 2019). For wetlands these include (i) delineation of wet-
land area, the largest natural CH4 source, especially in re-
gions like Alaska and Florida, (ii) conflation of fluxes from
wetlands and fresh waters leading to double counting (Thorn-
ton et al., 2016), and (iii) classification of saturated soils as
non-wetland, possibly missing strong CH4 emission poten-
tial. For agricultural lands, we must also consider (iv) de-
forestation for agricultural use, which reduces the soil CH4
sink potential (Robertson et al., 2000), or (v) accurate rep-
resentation of agricultural land CH4 potential when land use
includes a complex mixture of ruminants feedlots, manure,
and pastures (Lassey, 2008). These potential large sources
of uncertainties in biogenic CH4 flux estimates cannot be
addressed with the land cover maps currently used to scale
CH4 fluxes and the existing distribution of CH4 observation
sites (Rosentreter et al., 2021). Hence, if we are to build
a US CH4 budget using a scaled-up land use classification
scheme (as is done for CO2), we need both better representa-

tion of CH4 measurement sites and better identification and
quantification of the CH4 source/sink potential of the land
use classes themselves, i.e., specific development of land use
classes based on CH4 potential.

Ideally, CH4 measurement infrastructure should have rep-
resentation of all IGBP vegetation classes within and across
clusters, where appropriate, and address the scale of spa-
tial heterogeneity that reduces uncertainty in a national CH4
budget with confidence limits that can inform both research
objectives and mitigation policy. Thus, the incorporation of
representative CH4 sources and sink strength is essential to
develop national CH4 budgets. Neglecting sinks would fur-
ther bias models that suggest sources occur where we are
confident they do not. Advancing research and our process-
level understanding of biogenic CH4, we need to determine
the measurement scales to assess the degree of spatial het-
erogeneity required to reduce uncertainty within and among
sites. One means to address the within-site scale of spatial
uncertainty is from automated chamber measurements within
flux tower footprints, such as that found in soils, or first-
and second-order streams. This would also allow the scien-
tific community to determine the within site CH4 source/sink
strength from local (chamber; < 1 m2), ecosystem (EC flux
tower;∼ 1 km2), and landscape scales (tower concentrations;
∼ 100 s km2). At even a larger scale, airborne observations
of atmospheric CH4 concentrations can be used to estimate
boundary-level surface–atmosphere CH4 fluxes and poten-
tially provide greater spatial coverage than towers (Chang et
al., 2014; Zona et al., 2016) and provide a mechanistic link
between tower-based and satellite-derived CH4 estimates.

The rate of global climate change re-enforces the urgency
to establish a continental-scale CH4 observatory network that
can enable the first national CH4 budget. As it stands, we cur-
rently do not know the scale, location, or the magnitude of
site-based biogenic CH4 source/sinks to estimate a national
budget. For example, we lack the quantitative information
about specific processes (particularly those that are stochas-
tic, e.g., temperature sensitivity, susceptibility to drought and
flooding, tipping points) from representative ecosystems that
would scale and inform a national CH4 budget. In addition
to the current uncertainty in basic ecosystem-level CH4 pro-
cesses and the way they spatially scale, the backdrop of cli-
mate change is also changing the rates of CH4 production
and consumption, as well as the CH4 transport pathways.
For example, arctic regions are warming faster than most
other regions of the world (Serreze and Barry, 2011), turn-
ing permafrost into wetlands and changing traditional CH4
sinks to sources on short timescales (Chadburn et al., 2017;
Schaefer, 2019; Yumashev et al., 2019). In temperate ar-
eas, higher climate-change-induced variability in precipita-
tion (e.g., higher moisture of upland forested soils, prolonged
droughts) results in a reduction of soil CH4 uptake and a re-
duced global CH4 sink (Ni and Groffman, 2018). Sea-level
rise, which leads to the inundation of coastal regions turning
previously dry upland environments into saturated, anoxic ar-
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eas, can in some cases increase CH4 production and emission
rates (Lu et al., 2018). Hence, we do not have a baseline US
CH4 budget to establish a starting point now and to compare
to in the future, and as a baseline to estimate the efficacy of
any mitigation decision (policy) made today. As scientists,
we are often asked what the most likely future state of an
ecological system is and what the most likely state of a sys-
tem is, given a decision or action is made today. The current
state of CH4 research and its ability to inform these questions
are still nascent.

5 Conclusions

We used landscape dissimilarity to assess gaps in current
CH4 infrastructure at the landscape scale in the US. Evalu-
ating the strengths and limitations of existing measurement
infrastructure is critical for strategic augmentation to pro-
vide the most valuable information toward reducing uncer-
tainties in future large-scale budget estimations. This analy-
sis complements previous studies based on climatic or vege-
tation characteristics (Hargrove and Hoffman, 2003; Yang et
al., 2008; Villarreal et al., 2018) and identifies regions within
the US where gaps are limiting the development of upscaling
techniques. To accurately understand the impact of climate
and land cover change on biogenic CH4 emissions, we need
a long-term, calibrated, and strategic continental-scale CH4
observatory network. Current gaps in existing measurement
infrastructure limit our ability to capture the spatial and tem-
poral variations of biogenic CH4 fluxes and therefore limit
our ability to predict future CH4 emissions. Maps of poten-
tial CH4 emissions require land cover classification targeted
at land cover types like wetlands that are important sources
of CH4 to the atmosphere. Aquatic ecosystems like streams
and lakes as well as coastal ecosystems are significant and
variable sources of CH4 not well studied on a long-term ba-
sis. Through our analysis using climate, land cover, and lo-
cation variables, we have identified priority areas to enhance
research infrastructure to provide a more complete under-
standing of the CH4 flux potential of ecosystem types in the
US. For EC tower locations, dissimilarity coverage was lack-
ing for clusters Na, W, and Nb, and currently clusters Na,
W, Eb, and Nb are substantially undersampled. All aquatic
sites were undersampled within each cluster. An enhanced
network would allow for us to monitor both the response of
CH4 fluxes to climate and land use change as well as to as-
sess the impact of future policy and mitigation strategies.
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